Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest.
نویسندگان
چکیده
The relationships between plant carbon resources, soil carbon and nitrogen content, and ectomycorrhizal fungal (EMF) diversity in a monospecific, old-growth beech (Fagus sylvatica) forest were investigated by manipulating carbon flux by girdling. We hypothesized that disruption of the carbon supply would not affect diversity and EMF species numbers if EM fungi can be supplied by plant internal carbohydrate resources or would result in selective disappearance of EMF taxa because of differences in carbon demand of different fungi. Tree carbohydrate status, root demography, EMF colonization, and EMF taxon abundance were measured repeatedly during 1 year after girdling. Girdling did not affect root colonization but decreased EMF species richness of an estimated 79 to 90 taxa to about 40 taxa. Cenococcum geophilum, Lactarius blennius, and Tomentella lapida were dominant, colonizing about 70% of the root tips, and remained unaffected by girdling. Mainly cryptic EMF species disappeared. Therefore, the Shannon-Wiener index (H') decreased but evenness was unaffected. H' was positively correlated with glucose, fructose, and starch concentrations of fine roots and also with the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC/DON), suggesting that both H' and DOC/DON were governed by changes in belowground carbon allocation. Our results suggest that beech maintains numerous rare EMF species by recent photosynthate. These EM fungi may constitute biological insurance for adaptation to changing environmental conditions. The preservation of taxa previously not known to colonize beech may, thus, form an important reservoir for future forest development.
منابع مشابه
Ectomycorrhizal fungal communities associated with Populus simonii and Pinus tabuliformis in the hilly-gully region of the Loess Plateau, China
The Loess Plateau region of northwestern China has unique geological and dry/semi-dry climate characteristics. However, knowledge about ectomycorrhizal fungal (EMF) communities in the Loess Plateau is limited. In this study, we investigated EMF communities in Populus simonii and Pinus tabuliformis patches within the forest-steppe zone, in pine forests within the forest zone, and the transitiona...
متن کاملForest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems
Fungal communities have been shown to be highly sensitive toward shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest m...
متن کاملDistribution and drivers of ectomycorrhizal fungal communities across the North American Arctic
Ectomycorrhizal fungi (EMF) form symbioses with a few plant species that comprise a large fraction of the arctic vegetation. Despite their importance, the identity, abundance and distribution of EMF in the Arctic, as well as the key drivers controlling their community composition are poorly understood. In this study, we investigated the diversity and structure of EMF communities across a biocli...
متن کاملGenetically based susceptibility to herbivory influences the ectomycorrhizal fungal communities of a foundation tree species.
Although recent research indicates that herbivores interact with plant-associated microbes in complex ways, few studies have examined these interactions using a community approach. For example, the impact of herbivory on the community structure of ectomycorrhizal fungi (EMF) is not well known. The influence of host plant genetics on EMF community composition is also poorly understood. We used a...
متن کاملMetatranscriptomic Study of Common and Host-Specific Patterns of Gene Expression between Pines and Their Symbiotic Ectomycorrhizal Fungi in the Genus Suillus
Ectomycorrhizal fungi (EMF) represent one of the major guilds of symbiotic fungi associated with roots of forest trees, where they function to improve plant nutrition and fitness in exchange for plant carbon. Many groups of EMF exhibit preference or specificity for different plant host genera; a good example is the genus Suillus, which grows in association with the conifer family Pinaceae. We i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 76 6 شماره
صفحات -
تاریخ انتشار 2010